Abstraction and Refinement for Solving Continuous Markov Decision Processes

نویسندگان

  • Alberto Reyes
  • Pablo H. Ibargüengoytia
  • Luis Enrique Sucar
  • Eduardo F. Morales
چکیده

ion and Refinement for Solving Continuous Markov Decision Processes Alberto Reyesand Pablo Ibargüengoytia Inst. de Inv. Eléctricas Av. Reforma 113, Palmira, Cuernavaca, Mor., México {areyes,pibar}@iie.org,mx L. Enrique Sucar and Eduardo Morales INAOE Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Pue., México {esucar,emorales}@inaoep.mx

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AsistO: A Qualitative MDP-based Recommender System for Power Plant Operation

This paper proposes a novel and practical model-based learning approach with iterative refinement for solving continuous (and hybrid) Markov decision processes. Initially, an approximate model is learned using conventional sampling methods and solved to obtain a policy. Iteratively, the approximate model is refined using variance in the utility values as partition criterion. In the learning pha...

متن کامل

Computing Laboratory A GAME-BASED ABSTRACTION-REFINEMENT FRAMEWORK FOR MARKOV DECISION PROCESSES

In the field of model checking, abstraction refinement has proved to be an extremely successful methodology for combating the state-space explosion problem. However, little practical progress has been made in the setting of probabilistic verification. In this paper we present a novel abstraction-refinement framework for Markov decision processes (MDPs), which are widely used for modelling and v...

متن کامل

Progressive Abstraction Refinement for Sparse Sampling

Monte Carlo tree search (MCTS) algorithms can encounter difficulties when solving Markov decision processes (MDPs) in which the outcomes of actions are highly stochastic. This stochastic branching can be reduced through state abstraction. In online planning with a time budget, there is a complex tradeoff between loss in performance due to overly coarse abstraction versus gain in performance fro...

متن کامل

A game-based abstraction-refinement framework for Markov decision processes

In the field of model checking, abstraction refinement has proved to be an extremely successful methodology for combating the state-space explosion problem. However, little practical progress has been made in the setting of probabilistic verification. In this paper we present a novel abstraction-refinement framework for Markov decision processes (MDPs), which are widely used for modelling and v...

متن کامل

Advances in Probabilistic Model Checking

Random phenomena occur in many applications: security, communication protocols, distributed algorithms, and performance and dependability analysis, to mention a few. In the last two decades, efficient model-checking algorithms and tools have been developed to support the automated verification of models that incorporate randomness. Popular models are Markov decision processes and (continuous-ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006